标签:高中数学题库,高中数学题,http://www.170xue.com
配方法例题习题,http://www.170xue.com
Ⅰ、配方法示范习题:
1. 略去
2. 方程x +y -4kx-2y+5k=0表示圆的充要条件是_____。
A. <k<1 B. k< 或k>1 C. k∈R D. k= 或k=1
3. 已知sin α+cos α=1,则sinα+cosα的值为______。
A. 1 B. -1 C. 1或-1 D. 0
4. 函数y=log (-2x +5x+3)的单调递增区间是_____。
A. (-∞, ] B. [ ,+∞) C. (- , ] D. [ ,3)
5. 已知方程x +(a-2)x+a-1=0的两根x 、x ,则点P(x ,x )在圆x +y =4上,则实数a=_____。
【配方法简解】 1小题的配方法思路:利用等比数列性质a a =a ,将已知等式左边后配方(a +a ) 易求。答案是:5。
2小题的配方法思路:配方成圆的标准方程形式(x-a) +(y-b) =r ,解r >0即可,选B。
3小题的配方法思路:已知等式经配方成(sin α+cos α) -2sin αcos α=1,求出sinαcosα,然后求出所求式的平方值,再开方求解。选C。
4小题的配方法思路:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。
5习题的配方法思路:答案3- 。
配方法的巩固性习题:
1. α、β是方程x -2ax+a+6=0的两实根,则(α-1) +(β-1) 的最小值是_____。
A. - B. 8 C. 18 D.不存在
2. 已知x、y∈R ,且满足x+3y-1=0,则函数t=2 +8 有_____。
A.最大值2 B.最大值 C.最小值2 B.最小值
3. 椭圆x -2ax+3y +a -6=0的一个焦点在直线x+y+4=0上,则a=_____。
A. 2 B. -6 C. -2或-6 D. 2或6
4. 化简:2 + 的结果是_____。
A. 2sin4 B. 2sin4-4cos4 C. -2sin4 D. 4cos4-2sin4
6. 设F 和F 为双曲线 -y =1的两个焦点,点P在双曲线上且满足∠F PF =90°,则△F PF 的面积是_________。
5. 若x>-1,则f(x)=x +2x+ 的最小值为___________。
6. 函数y=(x-a) +(x-b) (a、b为常数)的最小值为_____。
A. 8 B. C. D.最小值不存在
7. 设s>1,t>1,m∈R,x=log t+log s,y=log t+log s+m(log t+log s),
① 将y表示为x的函数y=f(x),并求出f(x)的定义域;
②若关于x的方程f(x)=0有且仅有一个实根,求m的取值范围。
8. 设二次函数f(x)=Ax +Bx+C,给定m、n(m<n),且满足A [(m+n) + m n ]+2A[B(m+n)-Cmn]+B +C =0 。
① 解不等式f(x)>0;
② 是否存在一个实数t,使当t∈(m+t,n-t)时,f(x)<0 ?若不存在,说出理由;若存在,指出t的取值范围。
,配方法例题习题