12-20 22:51:13 浏览次数:896次 栏目:数学典例讲解
三角形是最重要的基本平面图形,很多较复杂的图形问题可以化归为三角形的问题.
如图3.2-1 ,在三角形中,有三条边,三个角,三个顶点,在三角形中,角平分线、中线、高(如图3.2-2)是三角形中的三种重要线段.
三角形的三条中线相交于一点,这个交点称为三角形的重心.三角形的重心在三角形的内部,恰好是每条中线的三等分点.
例1 求证三角形的三条中线交于一点,且被该交点分成的两段长度之比为2:1.
已知 D、E、F分别为三边BC、CA、AB的中点,
求证 AD、BE、CF交于一点,且都被该点分成2:1.
证明 连结DE,设AD、BE交于点G,
D、E分别为BC、AE的中点,则DE//AB,且,
∽,且相似比为1:2,
.
设AD、CF交于点,同理可得,
则与重合,
AD、BE、CF交于一点,且都被该点分成.
已知的三边长分别为,I为的内心,且I在的边上的射影分别为,求证:.
证明 作的内切圆,则分别为内切圆在三边上的切点,
为圆的从同一点作的两条切线,,
同理,BD=BF,CD=CE.
例2 求证:三角形的三条高交于一点.
已知 中,AD与BE交于H点.
求证 .
证明 以CH为直径作圆,
在以CH为直径的圆上,
同理,E、D在以AB为直径的圆上,可得BED与BAD的关系
又与有公共角
过不共线的三点A、B、C有且只有一个圆,该圆是三角形ABC的外接圆,圆心O为三角形的外心.三角形的外心到三个顶点的距离相等,是各边的垂直平分线的交点.
例3
即.
,三角形的"四心" 练习题 讲解相关分类
数学典例讲解 推荐