当前位置:一起来学网学习网高中学习高中数学数学典例讲解高中数学定义法解题思路示范

高中数学定义法解题思路示范

12-20 22:58:55  浏览次数:726次  栏目:数学典例讲解

标签:高一数学讲解,高中数学讲解,http://www.170xue.com 高中数学定义法解题思路示范,http://www.170xue.com

数学定义法
所谓定义法,就是直接用高中数学定义解题。高中数学中的定理、公式、性质和法则等,都是由定义和公理推演出来。定义是揭示概念内涵的逻辑方法,它通过指出概念所反映的事物的本质属性来明确概念。
定义是千百次实践后的必然结果,它科学地反映和揭示了客观世界的事物的本质特点。简单地说,定义是基本概念对数学实体的高度抽象。用定义法解题,是最直接的方法,本讲让我们回到定义中去。
数学定义法示范性题组:
例1. 已知z=1+i,  ① 设w=z +3 -4,求w的三角形式;    ② 如果 =1-i,求实数a、b的值。(94年全国理)
【分析】代入z进行运算化简后,运用复数三角形式和复数相等的定义解答。
【解】由z=1+i,有w=z +3 -4=(1+i) +3 -4=2i+3(1-i)-4=-1-i,w的三角形式是 (cos +isin );
由z=1+i,有 = = =(a+2)-(a+b)i。
由题设条件知:(a+2)-(a+b)i=1+i;
根据复数相等的定义,得: ,
解得 。
【注】求复数的三角形式,一般直接利用复数的三角形式定义求解。利用复数相等的定义,由实部、虚部分别相等而建立方程组,这是复数中经常遇到的。
例2. 已知f(x)=-x +cx,f(2)=-14,f(4)=-252,求y=log f(x)的定义域,判定在( ,1)上的单调性。
【分析】要判断函数的单调性,必须首先确定n与c的值求出函数的解析式,再利用函数的单调性定义判断。
【解】   解得:  
 ∴ f(x)=-x +x  解f(x)>0得:0<x<1
设 <x <x <1, 则f(x )-f(x )=-x +x -(-x +x )=(x -x )[1-(x +x )( x +x )],
∵ x +x > , x +x >    ∴ (x +x )( x +x )〉 × =1
∴ f(x )-f(x )>0即f(x)在( ,1)上是减函数
∵ <1   ∴ y=log f(x) 在( ,1)上是增函数。
 

  A’              A
                      D
       C’                C
          O            H
 B’              B  
 

【注】关于函数的性质:奇偶性、单调性、周期性的判断,一般都是直接应用定义解题。本题还在求n、c的过程中,运用了待定系数法和换元法。
例3. 如图,已知A’B’C’—ABC是正三棱柱,D是AC中点。
①   证明:AB’∥平面DBC’;
②   假设AB’⊥BC’,求二面角D—BC’—C的度数。(94年全国理)
数学定义法解题的思路】 由线面平行的定义来证①问,即通过证AB’平行平面DBC’内的一条直线而得;由二面角的平面角的定义作出平面角,通过解三角形而求②问。
【解】 ① 连接B’C交BC’于O, 连接OD
∵ A’B’C’—ABC是正三棱柱
∴ 四边形B’BCC’是矩形 
∴ O是B’C中点
△AB’C中, D是AC中点    ∴ AB’∥OD   
∴   AB’∥平面DBC’
②      作DH⊥BC于H,连接OH  ∴ DH⊥平面BC’C
∵ AB’∥OD,  AB’⊥BC’   ∴ BC’⊥OD  
∴ BC’⊥OH  即∠DOH为所求二面角的平面角。
设AC=1,作OE⊥BC于E,则DH= sin60°= ,BH= ,EH=  ;   
Rt△BOH中,OH =BH×EH= , 
∴  OH= =DH    ∴∠DOH=45°,即二面角D—BC’—C的度数为45°。
运用高中数学定义应注意】对于二面角D—BC’—C的平面角,容易误认为∠DOC即所求。利用二面角的平面角定义,两边垂直于棱,抓住平面角的作法,先作垂直于一面的垂线DH,再证得垂直于棱的垂线DO,最后连接两个垂足OH,则∠DOH即为所求,其依据是三垂线定理。本题还要求解三角形十分熟练,在Rt△BOH中运用射影定理求OH的长是计算的关键。
此题文科考生的第二问为:假设AB’⊥BC’,BC=2,求AB’在侧面BB’C’C的 射影长。解答中抓住斜线在平面上的射影的定义,先作平面的垂线,连接垂足和斜足而得到射影。其解法如下:作AE⊥BC于E,连接B’E即所求,易得到OE∥B’B,所以 = = ,EF= B’E。在Rt△B’BE中,易得到BF⊥BE,由射影定理得:B’E×EF=BE 即 B’E =1,所以B’E= 。
 

 y
    M  F
      A      x
 

例4. 求过定点M(1,2),以x轴为准线,离心率为 的椭圆的下顶点的轨迹方程。
【分析】运动的椭圆过定点M,准线固定为x轴,所以M到准线距离为2。抓住圆锥曲线的统一性定义,可以得到 = 建立一个方程,再由离心率的定义建立一个方程。
【数学定义法解题的思路】设A(x,y)、F(x,m),由M(1,2),则椭圆上定点M到准线距离为2,下顶点A到准线距离为y。根据椭圆的统一性定义和离心率的定义,得到:
  ,消m得:(x-1) + =1,
所以椭圆下顶点的轨迹方程为(x-1) + =1。
运用高中数学定义应注意】求曲线的轨迹方程,按照求曲线轨迹方程的步骤,设曲线上动点所满足的条件,根据条件列出动点所满足的关系式,进行化简即可得到。本题还引入了一个参数m,列出的是所满足的方程组,消去参数m就得到了动点坐标所满足的方程,即所求曲线的轨迹方程。在建立方程组时,巧妙地运用了椭圆的统一性定义和离心率的定义。一般地,圆锥曲线的点、焦点、准线、离心率等问题,常用定义法解决;求圆锥曲线的方程,也总是利用圆锥曲线的定义求解,但要注意椭圆、双曲线、抛物线的两个定义的恰当选用。
五、
 

,高中数学定义法解题思路示范
Copyright © 一起来学网 Corporation, All Rights Reserved
体育教学计划_语文知识_小学数学教案设计_高中化学学习方法
1 2 3 4 5 6 a 7 8 9 10 11 12