12-20 22:52:45 浏览次数:213次 栏目:高二数学试题
与
的图象恰好有两个公共点,等价于
的图象与直线
恰好有两个交点
或
作业(16)
1. 2 2. 3.
4. 3 5. cosx 6. 1
7. 解: (1)当x=40时,汽车从甲地到乙地行驶了小时,
要耗油(.
答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升.
(2)当速度为x千米/小时,汽车从甲地到乙地行驶了设耗油量为h(x)升,h(x)=(
)·
,
h’(x)=,(0<x≤120
令h’(x)=0,得x=80.
当x∈(0,80)时,h’(x)<0,h(x)是减函数;
当x∈(80,120)时,h’(x)>0,h(x)是增函数.
∴当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120)上只有一个极值,所以它是最小值.
答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
8.解:(1)f′(x)=-2ax=,x∈(0,+∞).令f′(x)=0,解得x=.当x变化时,f′(x),f(x)的变化情况如下表:
所以,f(x)的单调递增区间是,f(x)的单调递减区间是.
(2)证明:当a=时,f(x)=lnx-x2.由(1)知f(x)在(0,2)内单调递增,在(2,+∞)内单调递减.令g(x)=f(x)-f.由于f(x)在(0,2)内单调递增,故f(2)>f,即g(2)>0.
取x′=e>2,则g(x′)=<0.
所以存在x0∈(2,x′),使g(x0)=0,即存在x0∈(2,+∞),使f(x0)=f.
(说明:x′的取法不惟一,只要满足x′>2,且g(x′)<0即可.)
作业(17)
1. D ,令
,则
,
当时
,当
时
,所以
为
极小值点,故选D
2. B
3. 函数的导数为
,所以在
的切线斜率为
,所以切线方程为
上一页 [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] 下一页
,高二上册数学(文科)寒假作业及答案tag: 数学 高二数学试题,高二数学试题大全,高二学习方法,高中学习 - 高二学习 - 高二数学 - 高二数学试题
相关分类
高二数学试题 推荐