当前位置:一起来学网学习网高中学习高一学习高一数学高一数学辅导高一数学-函数的概念

高一数学-函数的概念

12-20 22:58:55  浏览次数:717次  栏目:高一数学辅导

标签:高一数学学习,高一数学学习方法,http://www.170xue.com 高一数学-函数的概念,http://www.170xue.com

  (一)、函数的定义

  1、传统定义:设在某一变化过程中有两个变量x和y,如果对于某一范围内x的每一个值,y都有唯一的值和它对应,那么就说y是x的函数,x叫做自变量,y叫做因变量(函数).

  2、现代定义:设A、B是两个非空数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x ,在集合B中都有唯一确定的数f(x)和它对应,那么就称 f:A→B为从集合A到集合B的一个函数,记作y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y的值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.

  3、认知:
  ①注意到现代定义中“A、B是非空数集”,因此,今后若求得函数定义域或值域为φ,则此函数不存在.

  ②函数对应关系、定义域和值域是函数的三要素,缺一不可.在函数的三要素中,对应关系是核心,定义域是基础,当函数的定义域和对应法则确定之后,其值域也随之确定.

  (二)、映射的概念

  将函数定义中的两个集合从非空数集扩展到任意元素的集合,便得到映射概念.
  1、定义1:设A、B是两个集合,如果按照某种对应法则f,对于集合A中任何一个元素,在集合B中都有唯一的元素和它对应,那么这样的对应(包括集合A、B及集合A到集合B的对应法则f)叫做集合A到集合B的映射,记作 f:A→B

  2、定义2:给定一个集合A到集合B的映射 f:A→B,且a∈A,b∈B,如果在此映射之下元素a和元素b对应,则将元素b叫做元素a的象,元素a叫做元素b的原象.即如果在给定映射下有 f:a→b,则b叫做a的象,a叫做b的原象.

  3、认知:
  映射定义的精髓在于“任一(元素)对应唯一(元素)”,即A中任一元素在B中都有唯一的象.在这里,A中元素不可剩,允许B中有剩余;不可“一对多”,允许“多对一”.因此,根据B中元素有无剩余的情况,映射又可分为“满射”和“非满射”两类.

  集合A到集合B的映射 f:A→B是一个整体,具有方向性; f:A→B 与 f:B→A 一般情况下是不同的映射.

  (三)、函数的表示法

  表示函数的方法,常用的有解析法、列表法、图象法和口头描述法.
  1、解析法:把两个变量的函数关系,用一个等式来表示,这个等式叫做函数的解析表达式,简称解析式.

  2、列表法:列出表格表示两个变量的函数关系的方法.运用列表法表示的,多是理论或实际生活中偏于实用的函数.

  3、图象法:用函数图象表示两个变量之间函数关系的方法.

  图象法直现形象地表示出函数的变化情况,是数形结合的典范.只是它不能精确表示自变量与函数值之间的对应关系. 

,高一数学-函数的概念
Copyright © 一起来学网 Corporation, All Rights Reserved
体育教学计划_语文知识_小学数学教案设计_高中化学学习方法
1 2 3 4 5 6 a 7 8 9 10 11 12