12-20 22:53:02 浏览次数:476次 栏目:高考数学复习
②若,则,
∴准线方程为:,∴,∴
∴所求双曲线方程为:或
点拨:求圆锥曲线方程时,一般先由条件设出所求方程,然后再根据条件列出基本的方程组解方程组得出结果.
例2.已知点,,在双曲线上求一点,使的值最小.
解:∵,,∴,∴
设点到与焦点相应准线的距离为则
∴,∴
至此,将问题转化成在双曲线上求一点,
使到定点的距离与到准线距离和最小.
即到定点的距离与准线距离和最小为直线垂直于准线时,
解之得,点.
点拨:灵活巧妙地运用双曲线的比值定义于解题中,将会带给我们意想不到的方便和简单.教学中应着重培养学生灵活运用知识的能力.
【反馈练习】
1.若双曲线上的点到左准线的距离是到左焦点距离的,则
,2017高考数学复习:圆锥曲线(五)tag: 圆锥曲线 高考数学 高考数学复习,高考数学复习大全,高考复习方法,高中学习 - 高考学习 - 高考数学复习资料 - 高考数学复习
相关分类
高考数学复习 推荐