当前位置:一起来学网学习网高中学习高考学习高考数学复习资料高考数学复习2017高考数学复习:圆锥曲线(六)

2017高考数学复习:圆锥曲线(六)

12-20 22:58:55  浏览次数:772次  栏目:高考数学复习

标签:高考数学复习大全,高考复习方法,http://www.170xue.com 2017高考数学复习:圆锥曲线(六),http://www.170xue.com

2013高考数学复习:圆锥曲线(六)

【方法点拨】

解析几何是高中数学的重要内容之一,也是衔接初等数学和高等数学的纽带。而圆锥曲线是解析几何的重要内容,因而成为高考考查的重点。研究圆锥曲线,无外乎抓住其方程和曲线两大特征。它的方程形式具有代数的特性,而它的图像具有典型的几何特性,因此,它是代数与几何的完美结合。高中阶段所学习和研究的圆锥曲线主要包括三类:椭圆、双曲线和抛物线。圆锥曲线问题的基本特点是解题思路比较简单清晰,解题方法的规律性比较强,但是运算过程往往比较复杂,对学生运算能力,恒等变形能力,数形结合能力及综合运用各种数学知识和方法的能力要求较高。

1. 一要重视定义,这是学好圆锥曲线最重要的思想方法,二要数形结合,既熟练掌握方程组理论,又关注图形的几何性质.

2.着力抓好运算关,提高运算与变形的能力,解析几何问题一般涉及的变量多,计算量大,解决问题的思路分析出来以后,往往因为运算不过关导致半途而废,因此要寻求合理的运算方案,探究简化运算的基本途径与方法,并在克服困难的过程中,增强解决复杂问题的信心,提高运算能力.

3.突出主体内容,要紧紧围绕解析几何的两大任务来学习:一是根据已知条件求曲线方程,其中待定系数法是重要方法,二是通过方程研究圆锥曲线的性质,往往通过数形结合来体现,应引起重视.

4.重视对数学思想如方程思想、函数思想、数形结合思想的归纳提炼,达到优化解题思维、简化解题过程

 第6课 圆锥曲线综合

【考点导读】

1.在理解和掌握圆锥曲线的定义和简单几何性质的基础上,把握有关圆锥曲线的知识内在联系,灵活地运用解析几何的常用方法解决问题.

2.通过问题的解决,理解函数与方程、等价转化、数形结合、分类讨论等数学思想.

3. 能够抓住实际问题的本质建立圆锥曲线的数学模型,实现实际问题向数学问题的转化,并运用圆锥曲线知识解决实际问题.

【基础练习】

1.给出下列四个结论:

①当a为任意实数时,直线恒过定点P,则过点P且焦点在y轴上的抛物线的标准方程是

②已知双曲线的右焦点为(5,0),一条渐近线方程为,则双曲线的标准方程是

③抛物线

④已知双曲线,其离心率,则m的取值范围是(-12,0)。

其中所有正确结论的个数是4

2.设双曲线以椭圆长轴的两个端点为焦点,其准线过椭圆的焦点,则双曲线的渐近线的斜率为

3.如果椭圆的弦被点(4,2)平分,则这条弦所在的直线方程是

www.170xue.com

【范例导析】

例1.已知抛物线的焦点为F,A、B是热线上的两动点,且过A、B两点分别作抛物线的切线,设其交点为M。

(I)证明为定值;

(II)设的面积为S,写出的表达式,并求S的最小值。

 解:(1)F点的坐标为(0,1)设A点的坐标为   B点的坐标为

可得

因此

过A点的切线方程为

[1] [2] [3] [4]  下一页

,2017高考数学复习:圆锥曲线(六)
Copyright © 一起来学网 Corporation, All Rights Reserved
体育教学计划_语文知识_小学数学教案设计_高中化学学习方法
1 2 3 4 5 6 a 7 8 9 10 11 12