12-20 22:52:45 浏览次数:590次 栏目:高考备考
(Ⅰ)求与
;
(Ⅱ)证明:.
17.(本小题满分13分)
已知向量
(Ⅰ)求的解析式;
(Ⅱ)求由的图象、
轴的正半轴及
轴的正半轴三者
围成图形的面积。
18.(本小题满分13分)图一,平面四边形
关于直线
对称,
,
,
.把
沿
折起(如图二),使二面角
的余弦值等于
.对于图二,完成以下各
小题:
(Ⅰ)求两点间的距离;
(Ⅱ)证明:平面
;
(Ⅲ)求直线与平面
所成角的正弦值.
编辑推荐:
查看更多有关高考数学的内容,请点击>>高考数学知识点专题
www.170xue.com19.(本小题满分13分) 二十世纪50年代,日本熊本县水俣市的许多居民都患了运动失调、四肢麻木等症状,人们把它称为水俣病.经调查发现一家工厂排出的废水中含有甲基汞,使鱼类受到污染.人们长期食用含高浓度甲基汞的鱼类引起汞中毒.引起世人对食品安全的关注.《中华人民共和国环境保护法》规定食品的汞含量不得超过1.00ppm.
罗非鱼是体型较大,生命周期长的食肉鱼,其体内汞含量比其他鱼偏高.现从一批罗非鱼中随机地抽出15条作样本,经检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点后一位数字为叶)如下:
(Ⅰ)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(Ⅱ)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批数量很大的鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及Eξ
20.(本小题满分14分)
已知焦点在轴上的椭圆
相关分类
高考备考 推荐