03-03 00:00:48 浏览次数:967次 栏目:数学学习方法
数学是研究空间形式和数量关系的科学,高中阶段的数学,是学习物理、化学、计算机和升入高等院校继续学习的必要基础。从短期目标来说,在高考的考试中,所占分值较高。从应用的角度来说,它是学习和研究现代科学技术的基础,也是社会生产和日常生活的基础。从发展的角度看,学好数学对于培养创新意识和应用意识,认识数学的科学和文化价值,形成理性思维都有着积极的作用。
然而,在数学学习中,发现许多同学有怵头、恐惧、厌烦学数学的心理。由于怵头、恐惧、厌烦这种心理的存在,又形成不爱学、不想学甚至对数学逆反的恶性循环。如果这样持续下去,直接影响今后的学习。升入高中阶段,可以把数学的学习当作一个新的起点,只要想学好数学其实并不难,不妨尝试着从以下方面努力。
走出误区
有些同学认为自己的数学基础没有打好,怕影响高中阶段的学习;有些同学认为数学抽象性较强,学起来枯燥乏味没有意思;有些同学认为数学很难,自己没有学习数学的头脑;有些同学认为学习数学只是为了考试,今后如果不搞数学专业,那么数学几乎是没用;还有些同学持应付的态度学习,认为只要进了大学校门,数学对付着能够及格就行等等,这些认识上的误区都会直接影响同学们学习数学。
心理学理论告诉我们,认识产生行动,行动决定结果。认识上的偏差就会产生行动上的错位,行动上的错位必然不会产生理想的学习效果。在这里,重点帮助同学们澄清关于数学基础不好会影响高中学习的问题。
我们承认初中数学学好了,固然可以为高中数学的学习奠定良好的基础,使高中的数学学习顺利一些。但是如果中考数学成绩不理想,千万不要泄气,更不能有应付和放弃的想法。数学学科系统性很强,知识之间是有联系的,这一点同学们比较看中,因此认为基础没打好怕影响高中的学习。其实,数学知识还有相对的独立性,这一点同学们领悟可能不深。比如集合、函数问题,我们在初中已经学过,高一还要学习,当然是在初中学习基础上的延伸,如果初中没学好,借此之机可以补上初中知识的漏洞。到了高中阶段,随着身心的发展和认知水平的提高,再反过来看初中的知识会感觉非常的简单,有时会有顿悟的感觉,即使没有学好这一专题,在学习新知识的同时使旧知识得到复习和巩固。再如,高中学习的集合、函数、三角、数列等章节,这些知识之间是相对独立的,不要因为一章知识没有学好就对其他章节失去信心,而应该在学习新的一章知识的同时弥补其他知识的缺陷。明确了这些,建议同学们把高中数学的学习当作新的学科来学,对初中未接触过的新知识要打好基础,不明白的问题不过夜,及时弄懂弄通;对在初中已经学过的知识的延伸学习中,要多思考自己在初、高中知识的衔接中有哪些断层?多问几个是什么?为什么?争取使高一数学的学习起到承上启下的作用,为高中的学习打下坚实的基础。
从心理上对数学的抵触是学习数学的天敌,因此要走出误区,提高学习数学的认识,正确认识数学学习的重要性,以积极的心态去面对数学的学习。
培养兴趣
爱因斯坦说过“兴趣是最好的老师。”的确,我们对于自己感兴趣的学科,学起来轻松自如,心情舒畅,成绩也满意。同样对于感兴趣的事情,会有无限的热情和巨大的干劲,会想尽一切办法、克服一切困难去做它。日本教育家木村久一有句名言:“天才就是强烈的兴趣和顽强的入迷”, 可见培养兴趣是何等的重要。
我们可以回想一下自己对哪些学科感兴趣?对哪些学科不感兴趣?分析形成的原因是什么?是否会有这样的感受,对感兴趣的学科,从心里就愿意学,哪怕是下同样的功夫,成绩也是较好的,从而就对这一学科就更爱学。正印证了孔子所说的:“知之者不如好之者,好之者不如乐之者。”
兴趣的指向不是与生俱来的,是在需要的基础上产生和发展起来的,兴趣还需要我们去培养。大家熟悉的国内外著名的科学家,他们能够取得卓越的成就,并不是他们能力超常,智慧超群,而是他们对某项研究感兴趣,在研究中体会到无穷的乐趣,进而成为研究的志趣。由兴趣——乐趣——志趣的衍变,不难看出是由喜好开始,体验到快乐,形成志向和兴趣的统一,然而是兴趣把他们引上了科学成功之路。
对数学学科产生兴趣同样靠我们有意识地培养。在学习数学时要克服只为高考而学数学的功利思想,从数学的功效和作用、数学对人的发展和生活需要的高度认识学习的重要性和必要性,从自己感兴趣的章节入手。比如喜欢几何,可以多做这方面的题目,在解题的过程中体会数学的思维方法,体会数学中蕴涵的美,体会数学学习的快乐,来带动其他章节的学习,从而培养对学数学的兴趣。
掌握方法
R·柯朗在《数学是什么?》这本名著的序言中有这样一段话:“学生和教师若不试图从数学的形式和单纯的演算中跳出来,以掌握数学的本质,那么挫折和迷惑将变得更为严重。”可见,学习数学不能盲目地在题海中遨游,更不能就题论题,尤其是高中阶段的数学学习,应当注重掌握数学思想方法。
什么是数学思想方法呢?特级教师、实验中学的王连笑校长在《教学生学会数学》一书中指出:数学思想方法按层次来分,可分为数学一般方法、逻辑学中的方法和数学思想方法,其中数学一般方法包括一些数学解题的具体方法和技能、技巧,如配方法、换元法、待定系数法、判别式法等等;逻辑学中的数学方法是数学思维方法,包括分析法、综合法、归纳法、整体方法、试验方法等等;数学思想方法则包括函数与方程的思想、分类讨论思想、化归思想和数形结合思想等等。在教学中老师把培养学生的数学思想方法作为教学的目标,那么同学们在学习中也要特别重视思想方法的学习和理解。明确技巧是解决问题所需要的特殊手段,方法是解决一类问题而采用的共同手段,而解决问题的最深层的精灵就是思想。方法是技巧的积累,思想是方法的升华。
解题技巧的锻炼靠我们在解题过程中的用心琢磨、深入思考和总结概括,不断地探索解题的规律。著名的数学教育家乔治·波利亚通过对解题过程中最富有特征性的典型智力活动的分析归纳,提炼出分析和解决数学问题的一般规律和方法,即弄清问题、拟定解题计划、实现解题计划、回顾等四个阶段。在教学中老师强调的把好审题关、计算关和数学表达关等,要求我们对概念、公式、定理等一些知识要记忆准确,掌握牢固,并会运用这些知识来进行计算、证明及逻辑推理等,这些都是对数学技巧和解题规律的概括与总结,有待于我们在学习中用心体会。只要把握学习数学的规律,掌握学习数学的方法,锻炼数学的思维,遇到任何题目都会迎刃而解。
tag: 数学学习方法,高中数学学习方法,初中数学学习方法,学习方法 - 数学学习方法
相关分类
数学学习方法 更新
数学学习方法 推荐