03-04 01:18:06 浏览次数:910次 栏目:小学五年级数学试卷
本讲重点讲相遇问题和追及问题。在这两个问题中,路程、时间、速度的关系表现为:
在实际问题中,总是已知路程、时间、速度中的两个,求另一个。
例1甲车每小时行40千米,乙车每小时行60千米。两车分别从A,B两地同时出发,相向而行,相遇后3时,甲 车到达B地。求A,B两地的距离。
分析与解:先画示意图如下:
图中C点为相遇地点。因为从C点到B点,甲车行3时,所以C,B两地的距离为40×3=120(千米)。
这120千米乙车行了120÷60=2(时),说明相遇时两车已各行驶了2时,所以A,B两地的距离是 (40+60)×2=200(千米)。
例2小明每天早晨按时从家出发上学,李大爷每天早晨也定时出门散步,两人相向而行,小明每分钟行60米,李大 爷每分钟行40米,他们每天都在同一时刻相遇。有一天小明提前出门,因此比平时早9分钟与李大爷相遇,这天小明比平时提前多少分钟出门?
分析与解:因为提前9分钟相遇,说明李大爷出门时,小明已经比平时多走了两人9分钟合走的路,即多走了 (60+40)×9=900(米),
所以小明比平时早出门900÷60=15(分)。
例3小刚在铁路旁边沿铁路方向的公路上散步,他散步的速度是2米/秒,这时迎面开来一列火车,从车头到车尾经 过他身旁共用18秒。已知火车全长342米,求火车的速度。
分析与解:
在上图中,A是小刚与火车相遇地点,B是小刚与火车离开地点。由题意知,18秒小刚从A走到B,火车头从A走到C,因为C到B正好是火车的长 度,所以18秒小刚与火车共行了342米,推知小刚与火车的速度和是342÷18=19(米/秒),
从而求出火车的速度为19-2=17(米/秒)。
例4 铁路线旁边有一条沿铁路方向的公路,公路上一辆拖拉机正以20千米/时的速度行驶。这时,一列火车以 56千米/时的速度从后面开过来,火车从车头到车尾经过拖拉机身旁用了37秒。求火车的全长。
分析与解
与例3类似,只不过由相向而行的相遇问题变成了同向而行的追及问题。由上图知,37秒火车头从B走到C,拖拉机从B走到A,火车比拖拉机多行一 个火车车长的路程。用米作长度单位,用秒作时间单位,求得火车车长为
速度差×追及时间
= [(56000-20000)÷3600]×37
= 370(米)。
,,五年级奥数专题二十五:行程问题(2)
tag: 小学五年级数学试卷,五年级数学题,五年级数学应用题,小学五年级数学试卷,小学试卷 - 小学数学试卷 - 小学五年级数学试卷
相关分类
小学五年级数学试卷 更新
小学五年级数学试卷 推荐