03-04 01:17:56 浏览次数:465次 栏目:小学五年级数学试卷
例1把一个长方形画成3行9列共27个小方格,然后用红、蓝铅笔任意将每个小方格涂上红色或蓝色。是否一定有两列小方格涂色的方式相同?
分析与解:将9列小方格看成9件物品,每列小方格不同的涂色方式看成不同的抽屉。如果涂色方式少于9种,那么就可以得到肯定的答案。涂色方式共有下面8种:
9件物品放入8个抽屉,必有一个抽屉的物品数不少于2件,即一定有两列小方格涂色的方式相同。
例2在任意的四个自然数中,是否总能找到两个数,它们的差是3的倍数?
分析与解:这道题可以将4个自然数看成4件物品,可是却没有明显的抽屉,这就需要根据题目构造合适的抽屉。
因为题目要求两个数的差是3的倍数,当两个数除以 3的余数相同时,这两个数的差一定是3的倍数,所以将自然数按除以3的余数分类,可以分为整除、余1、余2三类,将这三类看成3个抽屉。4件物品放入3个 抽屉,必有一个抽屉中至少有2件物品,即4个自然数中至少有2个数除以3的余数相同,它们的差是3的倍数。
所以,任意的四个自然数中,总能找到两个数,它们的差是3的倍数。
例3 从1,3,5,7,…,47,49这25个奇数中至少任意取出多少个数,才能保证有两个数的和是52。
分析与解:首先要根据题意构造合适的抽屉。在这25个奇数中,两两之和是52的有12种搭配:
{3,49},{5,47},{7,45},{9,43},
{11,41},{13,39},{15,37},{17,35},
{19,33},{21,31},{23,29},{25,27}。
将这12种搭配看成12个抽屉,每个抽屉中有两个数,还剩下一个数1,单独作为一个抽屉。这样就把25个奇数分别放在13个抽屉中了。因为一共 有13个抽屉,所以任意取出14个数,无论怎样取,至少有一个抽屉被取出2个数,这两个数的和是52。所以本题的答案是取出14个数。
-小学数学-五年级奥数,五年级奥数专题三十:抽屉原理(2)
tag: 小学五年级数学试卷,五年级数学题,五年级数学应用题,小学五年级数学试卷,小学试卷 - 小学数学试卷 - 小学五年级数学试卷
相关分类
小学五年级数学试卷 更新
小学五年级数学试卷 推荐